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\\\ ABSTRACT
< A forced oscillation problem for a Hamiltonian equation on a torus is
studied. If the dimension of the torus is equal to 2n, and if the period of

the time dgpendent Hamiltonian equation is equal to 1, it has been shown in

L AR ¢

Ere

467, that there are at least (2n+1) periodic solutions having period 1. 1In
this paper it is shown, that, under an .additional, necessary nondegeneracy
condition such an equation possesses a periodic solution having minimal
period T, for every sufficiently large prime number T. The proof uses the
classical variational approach. It is based on the Morse theory for periodic
solutioné/;;veloped in [S] which relates the winding number of a periodic

solution to its Morse index and on an iteration formula for the winding

number. <*\
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SIGNIFICANCE AND EXPLANATION

This report is an addition to a previous one concerning periodic
solutions of Hamiltonian systems on a torus. In an even earlier work, an
analogue of Morse's theorem relating 'conjugate points' on a closed geodesic
to the 'index' of the geodesic as a critical point of a functional was proved
in the Hamiltonian setting (where the functional is infinitely indefinite and
there is no index in Morse's sense).

In this report this analoque of Morse's result is used to find infinitely
many periodic solutions on the torus provided they are all linearly non-
degenerate. Such theorems all have the aim of understanding the basic action

principles of physics.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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NOTE ON SUBHARMONIC SOLUTIONS OF A
HAMILTONIAN VECTOR FIELD

C. Conley and E. Zehnder

1.

Introduction:

We consider on a torus T2n = n?“/zzn, n > 2,

1 vectorfield, which depends periodically on time ¢.

an exact Hamiltonian

Assuming its period to be

equal to 1, the vectorfield is, on the universal cover, given by

(M x = 3%n(t,x), xemr" ,

where h € Cz(l x R?n) is periodic in all its variables of period 1. One

may ask for forced oscillations, i.e. for periodic solutions having the period
of the given system. In fact, recently it has been proved in [6] (see also

M. Chaperon [3]) that the Hamiltonian vectorfield (1) possesses at least
(2n+1) periodic solutions of period 1. This has been conjectured by

V. I. Arnold in (1], [2]. Such a periodic solution is also a periodic
solution of period n € M, n > 1, x(t) = x(t+n); the period is however not
minimal. It is our aim to find solutions having integers n > 1 as their

minimal periods, such solutions are called subharmonic solutions. To find

such solutions further assumptions on the vectorfield are required, as the
example h = 0 shows.

If x(t) = x(t+T), Te W is a T-periodic solution, the linearized
equation along x(t) is given by
(2) y=38(tly , S(t) = h_(t,x(t)) |,
with S(t+T) = 8(t) Dbeing symmetric. The fundamental solution X(t)

satisfies ;

(3) X(t) = JIS(L)X(t), X(0) =1 .

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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The eigenvalues of P = X(T), T being the period of x(t), are called the
Ploguet-ultipliorl'of x(t).

Definition: A T-periodic solution x(t) is called non degenerate, if 1 is

not an eigenvalue of P = X(T).

This definition requires, that the linearized equation (2) admits no
nontrivial T-periodic solution. In the following we shall prove that there
are infinitely many subharmonic solutions provided all the periodic solutions
with integer periods are nondegenerate.

Theorem 1.
Assume that all the periodic solutions of the Hamiltonian system (1)

having integer periods are non-degenerate. Then there is a sequence {nk} ot

integers with 1lim nk =» ag k + =, sguch that for every k there are at

least 2 periodic solutions having n, as minimal period.

We point out that the loops of all these periodic solutions are

contractible on Tzn. Theorem 1 will follow from a more general statement

(Theorem 2 below) whose formulation requires some explanation.




2. A Formula for the Iterated Index

First we recall the index of a nondegenerate periodic orbit as intro-~
*
duced in [S). Let W=Sp(n,R) andlet W ={Mew/1¢aM}. 1f Mew
there is a unique polar-decomposition M = SO with 8 and O belonging to
W and S being positive symmetric and O orthogonal. Hence
Y ™ ~
0= with u=u_+ ju, € U(n) .
u, 1 2

, Here, U(n) is the group 6f unitary matrices over c?. since {det ;l = 1

there is a homomorphism O~ u» det u e s‘. If y(t), ¢t €t < ¢t is an

0 1
arc in W there is an associated arc ;(t) € U(n). We pick a continuous
function
8(t) € R with det u(t) = exp(i A(t)). Then A(Y) := Alt,) - A(t;) depends
only on Y. If Y(to) = Y(t,) then A(Y) = 2*m, m & Z and the loop Y 1is
contractible in W if and only if A(Y) = 0.

Consider now a nondegenerate T-periodic solution x(t). Its fundamental
solution X(t) =: y(t) according to (3), 0 < t < T is an arc in W
satisfying y(0) = id and Y(T) =P € w'. The rotation number of x(t) will
be denoted by A(Y). Now w has two components each of which is simply
connected relative to W. One component contains the matrix Y, = -id having

degree (+1). The other component contains the matrix

2
-1
- 1
2
-1 .

with I being the identity matrix in (n-1)~dimensions. Y¥Y_ has degree

Red e -

”~ »
(-1). We therefore can continue the arc Y by an arc Y from Yy(T) =Pew

to either Y  or Y_. 4(Y) depends only on P and we shall write

- oM e~

AMY) = r(P). It can be shown, [5], that 0 € |r(P)] ¢ *n and r(P) = 0 if




P is hyperbolic. Now A(Y VU ;) = A(Y) + A(;) is an integer multiple of «
and we define the index of the nondegenerate periodic solution x(t) to be
the integer

3x) =3 (M) + x(E)) €3 .
If x(t) = x(t+T) is a T-periodic solution we denote the f-times iterated
loop x(t) = x(t+&T) by xz. If it also is nondegenerate, it has an index
j(xz). namely

3ty = 2 aohy + rety

where Y(t) = X(t), 0 < t < 2T and P' = X(2T) = X(T)*. The following

formula then holds true:

Proposition.

Assume the periodic solution x and all its itera s xl are

nondegenerate. Then for all ¢ > 1:

(1) j(xz) = % (LA(Y) + r(pl)) with 0 < |r(p‘)| < ®n.

(i1) If P is hyperbolic, then:
Jxt) = 2 e §ix) .

As an immediate consequence we have

Corollary. For £ > 1
(13 JixY) - AN < Ten

(11) Either 1lim |j(xl)| =+ (in case A(Y) # 0) or |j(xl)| <n
Lo
for all ¢ > 1 (in case A(Y) = 0).

Proof.
To show A(Y') = 2A(Y). Recall that X(t+£T) = X(£)P%, 0 € t < T. Now

acrty = atv )+ A(Y,)) +...% A(Y,), when

Y, (t) = x(e)p*" ', o<t .

A(t)

Consider the polar decompositions l’k-‘I = e‘O O and X(t) = e o(t), and

define the deformation 6s of Y by




sA(t)

5 () = e o(t)e®0, 0 < 8 < 1 t

with 0 < t < T. From the diagram

t=0 5 t=7
s=1 )’
Y 1Y 72
s-o .~
é; i

where 61(t) = Yk(t) and GO(t) = 0(t)0, 0 € t < T, we conclude that

A(G1 Yz

A(Y1) = A(Yz) = 0 we conclude A(61) = A(Go) = A(O(t)O) which is equal to

(-50) (-71)) = 0, since the loop is contractible in W. Since

A(o(t)) = A(Y). Hence A(Yk) = A(Y) and the claim follows.
After these preliminary remarks we can formulate the result of this note.
Theorem 2

If the 1-periodic solutions of (1) are nondegenerate then there are at

least 22n of them. Assume that also the iterates of the 1-periodic

solutions are nondegenerate, then there is an integer No > 0 such that:

(1) for every prime T » N there is a periodic solution of (1) having

0

minimal period T;
(1i) moreover, if the T-periodic solutions are nondegenerate, then there

are at least 2 periodic solutions having minimal period T;

(1i1) if, in addition, for all the 1-periodic solutions x = x(t):

um-;- jOx*) = A(x) £ 0, 1
L »o0 o
22n

then there are at least periodic solutions having minimal period T.

All the periodic solutions found are contractible loops on Tzn.

The proof is based on the Morse theory for periodic solutions of a time

dependent Hamiltonian system as introduced in [5].




3. Morse theory for forced oscillations.

We make use of the classical variational principles for periodic
solutions: let T > 0 be an integer, then a T-periodic solution of (1),
which is contractible on TZ" is a critical point of the functional

£(x) = f: {% <x,Jx> - h(t,x(t))}at ,

which is defined on the T-periodic functions x : [0,T] +» l?n. Since

2n

h e cz(s1 X T), the problem of finding critical points of £ can be

reduced to the problem of finding critical points of a related function, g,

which is defined on the finite dimensional manifold T2n x R?N for some

large N (which depends on the chosen period T). This reduction is carried
out in (6] by means of a global Lyapunov-Schmidt reduction. The required T-
periodic solutions are now in one-to-one correspondence to the rest points of

the gradient flow

(4) a‘ls- z =Vglz), z e 72 x B2V .

More precisely this equation can be written as follows, with

z = (y,5) e T x B2V,

d
3 Y vo(z)

d
E;E-A5+v1(z) ’

where v, and v, e c1('1‘2n x R?N) are uniformly bounded. Moreover,
2

Ae (I?“) has an invariant splitting E,L6E_=R N such that for

(ﬁv.E_) €E _OE

N0 I i

£_ a_'lE

with

<A+€+,E+> >

(A_E_'€_> € = 'E_' .

-6- i
t

— et




' ) ‘4“'-‘-0&\ [N

It follows that there is a constant R > 0 such that

L1251 1f (g >R

+
= 1E_1°< -1 if |E_| <R .

Therefore the set S of bounded solutions of (4) is contained in the compact

set B,
2n
B =T xl)“)(D2 ’
N N
where D, = {E+ eRrR | |E+| <€ R} and D, {§_ eRr | |E_| < R}. Moreover
- 2n + 2n
B : T x BD1 x D2 is the (strict) exit set of B and B =T X D1 x 3D2

is the (strict) exit set of B for the time reverse flow. We conclude that
B is an isolating neighborhood and that the pair (B,B”) 4is an index pair

for the set S of bounded solutions in the sense of [4].

— >
T2n

«— >

The index of S, h{(S), is the homotopy type [(B/B ,*)]. The algebraic

N
7

invariants of S are given by the Poincaré¥polynomia1:

- 2n 2ny _N+j
(5) P(t) := p(t,h(S)) = p(t,B,B ) = J 3 )t .
j=o0
which represents the cohomology of the torus Tzn. If there are only finitely

many rest points of the flow, Zy s 1< k <m, these rest points constitute a
Morse-decomposition of the invariant set S. The algebraic invariants
p(t,h({zk})) are related to those of S by the following Morse equation

m

(6) ) plt,h(z,)) = P(t) + (1+t)(t)
k=1




with a formal power series Q having nonnegative integer coefficients (e.g.,
see [5]). If the T-periodic solution x,(t) which corresponds to the rest
point 2z 1is nondegenerate, then the polynomial p(t,h(zk)) is easily
computed:

lemma ((5), Lerma 2.6)

Assume x(t) = x{(t+T) is nondegenerate and denote its index by 3j. Then

the corresponding critical point z of g is an isolated invariant set with

index h(z) = [ém], i.e. the homotopy type of a pointed sphere of dimenaion

m = N+n—~j, 8o that
ple,h({g})) = V773
Consequently, if all the T-periodic solutions of (1) are nondegenerate iere
are only finitely many of them, Xqreoo Xy having indices j1,...,jm - che
equation (6) becomes
m N+n-jk

(7) Yot = P(t) + (142)Q(t) ,
k=1

with P(t) as in (5). In particular m > 22n’

The periods may however not
be minimal. We shall make use of the proposition in order to estimate the

contribution of the iterates of the 1-periodic solutions in equation (7).




4. Proof of theorem 2.

Assume that the 1-periodic solutions of (1) are nondegenerate. There are

finitely many of them, XgrooorXy and we denote their indices by
3 ) =3 (Al + xR ) .

Assume now, in addition, that the iterates of the t1-periodic solutions are
nondegenerate. We conclude by the proposition that if A(xk) # 0, then the
index of the iterated periodic solution increases as |j(xi)| + + > ag
£ +# ®», On the other hand, if A(xs) = 0 we have Ij(x:)l < n for all
£ > 1. Therefore there is an integer N, > 0 such that for every £ >N

0

and for all 1-periodic solutions we have:

|j(a{)| >n if A(x) #0

2
Ij(xs)l <n if A(xs) 0o .

Let T > No be prime and assume there are only finitely many T-periodic
solutions, which then constitute a Morse-decomposition of S. By the Lemma we
then have the Morse equation

m N+n-jk r

t + ¥ plt,h(z ) = P(t) + (1+t)d(t) ,
8

k=1 s=1
where the first sum is the contribution of the T-times iterated 1-periodic
solutions with indices j, = j(x:), 1< k < m. Since |jk| # n for every
k, then iterated periodic solutions do not represent any cohomology of the

T2n in dimension zero and in dimension 2n. Therefore the second

torus
term, representing the contribution of the periodic solutions having T as
minimal period, is not vanishing. We therefore have at least one critical

point, Zgr which corresponds to a periodic solution with minimal period

T. If all the T-period solutions are nondegenerate, then by the Lemma we must

have r > 2 in order to represent the lowest and highest cohomology of




T2n That is there are at least two critical points which correspond to

periodic solutions with minimal period T. Finally in case

1<h<m we conclude r » 2

the proof of theorem 2.

2n

as claimed in the theorem.

{3yl > n for

This finishes
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